Evaluation of conventional weed control programs in corn. Abendroth, Julie A., Alex R. Martin, and Kevin T. Horky. A field study was conducted to evaluate the efficacy and crop response of PRE alone, PRE+POST, and POST alone herbicide programs in conventionally-tilled corn. A randomized complete block design with three replications per treatment was utilized. The study was conducted on a Colo silt loam with 2.4% organic matter and a pH of 6.9. Seedbed preparation consisted of disking prior to planting and one field cultivation the day of planting. Individual plots consisted of six 30-inch rows, each 30 feet long. 'DeKalb DKC58-78' corn was planted May 22 at a population of 20,600 seeds/acre. Treatments were applied with a tractor-mounted sprayer traveling 3.0 mph. Application, crop, weed, and environmental data are presented:

Date Treatment	May 22 PRE	June 9 EPOST	June 19 MPOST		
Sprayer	4.5	4.5	4.5		
gpa	15	15	15		
psi (%E)	30	30	30		
Temperature (°F)	7.4	00			
Air	74	88	77 7 2		
Soil (4 inch)	61	70	73		
Soil Moisture	Adequate	Adequate	Adequate		
Wind (mph)	11	10	3		
Sky (% cloudy)	45	0	0		
Relative Humidity (%)	31	25	59		
Precip. after appl.					
Week 1 (inch)	0.04	2.01	2.13		
Week 2 (inch)	0.8	2.25	0.36		
Corn		_	_		
Leaf no.		2	5		
Height (inch)		4	12		
Velvetleaf		_	_		
Leaf no.		2	5		
Height (inch)		1-2	4		
Infestation (m ²)		47	50		
Pigweed species					
Leaf no.		4	16+		
Height (inch)		1-2	6-7		
Infestation (m ²)		61	10		
Common sunflower					
Leaf no.		4	8		
Height (inch)		2	5-6		
Infestation (m ²)		<1	1		
Annual grasses			_		
Leaf no.		1	5		
Height (inch)		1-2	5-6		
Infestation (m ²)		21	6		

Summary comments: Moisture was adequate throughout May and June; July and August saw limited amounts, with 1.03" and 1.31" respectively. The majority of Amaranthus species, AMASS, were Palmer amaranth with some waterhemp. Annual grasses, GGGAN, were primarily green and giant foxtail. Crop injury was noted on June 27 for the PRE+MPOST treatments, which showed 2-5% chlorosis; there was no significant difference between them. No crop injury was seen after June 27. Across the four weed species, there is no significant difference in efficacy between foramsulfuron and foramsulfuron & iodosulfuron treatments. However, when mesotrione or dicamba & diflufenzopyr are added to the above treatments, efficacy appears to be reduced. The PRE + MPOST treatment composed of S-metolachlor & atrazine, nicosulfuron & rimsulfuron + mesotrione + atrazine exceeded the percent weed control of all other treatments. Results of the study are summarized in the following table. (Dept. of Agronomy and Horticulture, University of Nebraska-Lincoln)

Table. Evaluation of conventional weed control programs in corn (Abendroth, Martin, and Horky).

Treatment	Appl	ApplicationABUTH		AMASS ^a			HELAN			GGGAN ^b				
	Rate	Timing	6/30	7/24	8/13	6/30	7/24	8/13	6/30	7/24	8/13	6/30	7/24	8/13
	(lb/A)							% weed	contro					
Isoxaflutole+	0.047	PRE	87	83	79	100	98	99	75	87	90	96	96	94
acetochlor&	2.36													
atrazine	1.17													
Isoxaflutole+	0.047	PRE	87	79	79	100	100	97	98	93	93	97	97	95
acetochlor&MON 4660&	1.78													
atrazine	1.44													
S-metolachlor&CGA-154281&	1.26	PRE	81	79	78	96	95	97	78	83	86	97	95	92
atrazine+	1.63													
isoxaflutole	0.047													
S-metolachlor&CGA-154281&	1.26	PRE	35	38	28	89	85	89	93	90	91	83	83	73
atrazine+	1.63													
flumetsulam&	0.035													
clopyralid	0.11													
S-metolachlor&CGA-154281&	0.45	PRE/	100	100	100	100	100	100	100	100	100	92	98	98
atrazine/	0.58													
nicosulfuron&	0.023	MPOST												
rimsulfuron+	0.012													
mesotrione+	0.063													
atrazine+	0.5													
COC°+	1%													
AMS ^d	2													
S-metolachlor&CGA-154281&	0.45	PRE/	98	96	93	94	96	95	99	100	100	97	98	98
atrazine/	0.58													
nicosulfuron&	0.023	MPOST												
rimsulfuron+	0.012													
dicamba&	0.063													
diflufenzopyr+	0.025													
atrazine+	0.5													
COC+	1%													
AMS	2													
Nicosulfuron&		EPOST	99	98	97	89	86	82	100	100	100	100	100	100
rimsulfuron&	0.011													
atrazine+	0.75													
mesotrione+	0.063													
COC+	1%													
AMS	2													
S-metolachlor&CGA-154281&	0.6	EPOST	98	94	95	100	100	96	100	97	98	98	94	94
atrazine+	0.78													
nicosulfuron&	0.023													
rimsulfuron+	0.012													
mesotrione+ NIS ^e +	0.063													
AMS	0.25% 2													
		FDOOT	00	00	00	00	0.5	00	100	400	400	00	07	04
S-metolachlor&CGA-154281&	0.6 0.78	EPOST	90	82	82	88	85	88	100	100	100	98	97	91
atrazine+														
nicosulfuron& rimsulfuron+	0.023 0.012													
dicamba&	0.012													
atrazine+	0.14													
COC+	1%													
AMS	2													
(continued)														

(continued)

Table. Evaluation of conventional weed control programs in corn (Abendroth, Martin, and Horky), continued.

Treatment	Application	tionABUTH		ł	AMASS ^a			HELAN			GGGAN ^b		
	Rate Timi	ng 6/30	7/24	8/13	6/30	7/24	8/13	6/30	7/24	8/13	6/30	7/24	8/13
	(lb/A)% weed control												
Check		0	0	0	0	0	0	0	0	0	0	0	0
Foramsulfuron+	0.033 EPO	ST 92	94	92	15	15	15	99	100	100	98	99	100
MSO ^f +	1.25%												
UAN ^g	2 qt												
Foramsulfuron&	0.028 EPO	ST 90	94	91	35	20	13	100	100	100	92	95	92
iodosulfuron+	0.0019												
MSO+	1.25%												
UAN	2 qt												
Foramsulfuron+	0.033 EPO	ST 87	67	78	86	75	75	98	97	98	88	82	80
dicamba&	0.063												
diflufenzopyr+	0.025												
MSO+	1.25%												
UAN	2 qt												
Foramsulfuron&	0.028 EPO	ST 91	83	78	82	77	68	98	100	97	94	97	92
iodosulfuron+	0.0019												
dicamba&	0.063												
diflufenzopyr+	0.025												
MSO+	1.25%												
UAN	2 gt												
Foramsulfuron+	0.033 EPO	ST 98	95	94	94	87	86	100	97	97	91	80	77
mesotrione+	0.047												
MSO+	1.25%												
UAN	2 gt												
Foramsulfuron&	0.028 EPO	ST 97	96	92	94	93	92	100	100	100	91	77	70
iodosulfuron+	0.0019												
mesotrione+	0.047												
MSO+	1.25%												
UAN	2 qt												
Foramsulfuron+	0.033 EPO	ST 94	93	95	33	28	18	100	100	100	97	96	93
atrazine+	1												
MSO+	1.25%												
UAN	2 gt												
Foramsulfuron&	0.028 EPO	ST 95	91	93	43	60	20	100	100	100	99	96	97
iodosulfuron+	0.0019												
atrazine+	1												
MSO+	1.25%												
UAN	2 qt												
LSD (P=.05)		8	9	10	11	9	8	14	10	9	8	10	12

^aAMASS = primarily Palmer amaranth, with some waterhemp

^bGGGAN = green and giant foxtail, with some fall panicum and large crabgrass

^cCOC = Prime Oil by Agriliance

^dAMS=N Pa-K by Agriliance

^eNIS = Preference by Agriliance

^fMSO = Destiny by Agriliance

^gUAN = Class 28% by Agriliance