Weed Control in Specialty Crops

Weed control in grain sorghum. Waltz, Aaron L., Alex R. Martin, and Kevin T. Horky. A field study was conducted to evaluate PRE, sequential PRE/POST, and postemergent weed control in conventionally-tilled grain sorghum. A randomized complete block design with three replications per treatment was utilized. The study was conducted on a Sharpsburg/Crete silty clay loam with 2.7% organic matter and a pH of 6.7. Seedbed preparation consisted of disking one week prior to planting and one field cultivation the day of planting. Individual plots consisted of six 30-inch rows, each 30 feet long. 'DeKalb DK53' grain sorghum was planted June 5 at 9 lbs/acre. Treatments were applied with a tractormounted sprayer traveling 3.0 mph. Application, crop, weed, and environmental data are presented below:

Date Treatment	June 5 PRE	June 26 EPOST
Sprayer		
gpa psi	15 30	15 30
Temperature (°F)		
Air	63	73
Soil (4 inch)	68	68
Soil Moisture	Adequate	Adequate
Wind (mph)	5	10
Sky (% cloudy)	100	0
Relative Humidity (%)	75	42
Precip. after appl.		
Week 1 (inch)	3.27	0.36
Week 2 (inch)	0.12	0.12
Grain Sorghum ` ´		
Leaf no.		3
Height (inch)		5
Common sunflower		
Leaf no.		2-3
Height (inch)		2
Infestation (m ²)		1
Velvetleaf		
Leaf no.		3-4
Height (inch)		2-4
Infestation (m ²)		50
Pigweed species \('		
Leaf no.		5-7
Height (inch)		1-2
Infestation (m ²)		10
Annual grasses \ \ '		
Leaf no.		3
Height (inch)		2-3
Infestation (m ²)		1
` /		

Summary comments: Precipitation was good until mid July, then conditions were dry. Pigweed species include mostly Palmer amaranth, with little common waterhemp. Grass species include green and giant foxtail with little fall panicum and large crabgrass. The PRE only and EPOST treatments typically resulted in poor velvetleaf control. The sequential treatments generally gave good weed control. Results of the study are summarized in the following table (Dept. of Agronomy and Horticulture, University of Nebraska-Lincoln).

Table. Weed control in grain sorghum. (Waltz, Martin, and Horky)

	Applic	ation	Injury		HELAN			ABUTH	1		AMASS	S ^a		3GGA1	1 ^b
Treatment	Rate	Timing	7/7	6/26	7/7	7/21	6/26	7/7	7/21	6/26	7/7	7/21	6/26	7/7	7/21
	(lb/A)		(%)						(% coı	ntrol)					
S-metolachlor&CGA-154281&	1.26	PRE	0	90	80	40	78	60	13	100	100	97	98	93	92
atrazine	1.63														
S-metolachlor&CGA-154281&	1.26	PRE/	0	97	100	100	87	95	87	100	100	100	100	98	97
atrazine/	1.63														
prosulfuron+	0.018	EPOST													
atrazine+	0.75														
COCc	1 qt														
S-metolachlor&CGA-154281/	1.24	PRE/	3	0	70	30	17	85	85	100	100	100	100	93	95
carfentrazone+	0.008	EPOST													
atrazine+	1.0														
NIS ^d	0.25% v/v														
S-metolachlor&CGA-154281/	1.24	PRE/	5	0	98	93	13	93	77	100	100	98	100	97	97
carfentrazone+	0.008	EPOST													
atrazine+	1.0														
2,4-D ^e +	0.24														
NIS	0.25% v/v														
S-metolachlor&CGA-154281/	1.63	PRE/	0	0	87	50	7	73	50	100	100	100	100	90	90
metsulfuron+	0.004	EPOST													
2,4-D ^e	0.29														
S-metolachlor&CGA-154281/	1.63	PRE/	7	0	67	50	13	73	17	100	100	100	98	93	93
metsulfuron	0.004	EPOST													
Fluroxypyr	0.126	EPOST	0		60	30		73	82		70	77		0	0
Fluroxypyr+	0.126	EPOST	0		80	90		83	77		80	77		0	0
2,4-D ^e	0.24														
Dimethenamid-P&	0.85	PRE	0	90	57	50	82	50	10	100	100	100	97	93	88
atrazine	1.65		_												
Dimethenamid-P&	0.85	PRE/	0	90	100	100	85	93	72	100	98	98	100	97	90
atrazine/	1.65														
prosulfuron+	0.018	EPOST													
dicamba+	0.125														
NIS	0.25% v/v	DDE/		0.7	400	400	70	00	70	400	400	400	00	0.7	0.7
Dimethenamid-P&	0.64	PRE/	0	87	100	100	78	93	70	100	100	100	98	97	97
atrazine/	1.24	FDOOT													
prosulfuron+	0.018	EPOST													
atrazine+ COC	0.5														
	1 qt	DDE/	0	97	100	100	82	92	70	100	100	100	100	100	00
Dimethenamid-P&	0.64	PRE/	U	97	100	100	62	92	70	100	100	100	100	100	98
atrazine/	1.24 0.25	EPOST													
quinclorac+ atrazine+		EPUSI													
MSO ⁹ +	0.5														
	1.5 pt														
AMS ^h	2.5														
Quinclorac+	0.25	EPOST	10		100	100		77	63		97	95		93	80
dicamba+	0.25														
MSO+	1.5														
AMS	2.5		_												
Quinclorac+	0.25	EPOST	5	•	100	100		92	77		100	92	•	82	67
dicamba&	0.275														
atrazine+	0.53														
MSO+	1.5														
AMS	2.5	FDOCT	0		100	100		77	60		00	0.7		0.7	60
Quinclorac+ atrazine+	0.25	EPOST	0	•	100	100		77	60		93	87		87	68
	1.0														
MSO+	1.5														
AMS Atrazine+	2.5	EDOST	0		100	100		92	63		03	90		70	70
	2.0	EPOST	0	•	100	100		83	03		93	88		70	70
MSO Atrazina+	1.5	EDOST	0		100	100		O.F	05		97	00		62	60
Atrazine+	1.25	EPOST	0	•	100	100	•	95	95		91	98		63	60
2,4-D ^f +	0.25														
MSO	1.5				_	_	_		_	_	-		_	•	_
Weedy Check			0	0	0	0	0	0	0	0	0	0	0	0	0
			_	. –			_		. –	_	-	_	_		٠.
LSD (p=0.05)			7	15	32	43	9	26	17	0	6	8	3	14	21

^aAMASS = mostly Palmer amaranth with little common waterhemp

^bGGGAN = green and giant foxtail with little fall panicum and large crabgrass

^cCOC = 'Prime Oil' by Agriliance

^dNIS = 'Preference' by Agriliance

^e2,4-D = '2,4-D Amine' by Agriliance

^f2,4-D = '2,4-D LV6' by Agriliance

gMSO = 'Destiny' by Agriliance

^hAMS = 'N-Pa-K' by Agriliance