Weed Control in Small Grains

Weed control in sorghum. Horky, Kevin T. and Alex R. Martin. A field study was conducted to evaluate the efficacy of weed control programs in sorghum. A randomized complete block design with three replications per treatment was utilized. The study was conducted on a Sharpsburg silty clay loam with 3.1% organic matter and a pH of 6.6. Individual plots consisted of six 30-inch rows, each 30 feet long. 'Dekalb DK53' sorghum was planted June 4 at a rate of 9 pounds per acre. Treatments were applied with a tractor-mounted sprayer traveling 3.0 mph. POST treatments were applied 25 days after planting. Application, crop, weed, and environmental data are presented below:

Date Treatment	June 4 PRE	June 29 POST
Sprayer		
gpa psi	15 30	15 30
Temperature (°C)	30	30
air	28	29
soil (4 inch)	19	21
Soil Moisture	adequate	adequate
Wind (mph)	3	4
Sky (% cloudy)	20	30
Relative humidity (%)	54	32
Precip. After appl. (inches)	J 4	32
week 1	0.18	2.92
week 2	1.01	0.66
Sorghum		
stage		V4
height (cm)		25
Velvetleaf		4.5
height (cm)		15 4
infestation (m2)		4
Green foxtail		10
height (cm) infestation (m2)		12 3
Palmer amaranth		J
height (cm)		23
infestation (m2)		5
,		

Summary comments: POST treatments improved control of velvetleaf and Palmer amaranth. Crop injury was observed with carfentrazone + atrazine in the POST treatment. Results of the study are summarized in the following table. (Dept. of Agronomy and Horticulture, University of Nebraska-Lincoln)

Table. Weed control in sorghum (Horky and Martin).

Treatment	Application		ABUTH		SETVI		AMAPA		- SORVU
	Rate	Timing	7/1	7/14	7/1	7/14	7/1	7/14	7/14
	(lb/a)				%Wee	%Weed Control			(% Necrosis)
S-metolachlor&	1.02	PRE/	30	88	99	99	95	95	0
benoxacor/									
fluroxypyr	0.13	POST							
S-metolachlor&	1.02	PRE/	32	98	99	99	95	96	0
benoxacor/									
fluroxypyr+	0.13	POST							
atrazine+	1.1								
COC ¹	1% v/v								
S-metolachlor&	1.02	PRE/	35	92	99	99	95	99	0
benoxacor/									
fluroxypyr+	0.09	POST							
clopyralid	0.09								
S-metolachlor&	1.02	PRE/	20	99	99	99	95	98	0
benoxacor/									
fluroxypyr+	0.09	POST							
clopyralid+	0.09								
atrazine+	1.1								
COC	1% v/v								
S-metolachlor&	1.26	PRE	58	80	93	93	95	90	0
atrazine&	1.63								
benoxacor									
S-metolachlor&	1.26	PRE/	63	90	95	95	95	99	0
atrazine&	1.63								·
benoxacor/									
prosulfuron+	0.018	POST							
atrazine+	0.75								
COC	1.5% v/v								
Alachlor&	2.19	PRE/	58	95	98	98	96	98	0
atrazine/	1.31	1111	30	55	30	30	30	30	O
halosulfuron+	0.03	POST							
COC	1.5% v/v	1001							
S-metolachlor&	1.02	PRE/	10	99	99	99	95	98	20
benoxacor/	1.02	FRE/	10	99	99	99	93	90	20
carfentrazone+	0.006	POST							
atrazine+	1.0	PU31							
NIS ²									
	0.25% v/v		17	0.F	00	00	05	00	0
S-metolachlor&	1.34	PRE/	17	85	99	99	95	99	0
benoxacor/	0.0	DOST							
metsulfuron+ 2,4-D ³	0.2	POST							
	0.285	DDE!	00		00	00	05	00	^
S-metolachlor&	1.34	PRE/	23	55	99	99	95	99	0
benoxacor/	2.2	DOOT							
metsulfuron (continued)	0.2	POST							

(continued)

Table. Weed control in sorghum (Horky and Martin), continued.

Treatment	Application		ABUTH		SETVI		AMAPA		SORVU
	Rate	Timing	7/1	7/14	7/1	7/14	7/1	7/14	7/14
	(lb/a)				%Wee	d Control			· (% Necrosis)
Dimethenamid-P&	0.64	PRE/	53	90	96	96	95	99	0
atrazine/	1.24								
prosulfuron+	0.018	POST							
atrazine+	0.5								
COC	1.5% v/v								
Quinclorac+	0.25	POST	0	85	0	88	0	90	0
atrazine+	1.0								
MSO ⁴ +	1.5 pt/a								
AMS ⁵	2.5								
Atrazine+	2.0	POST	0	85	0	45	0	92	0
MSO	1.5 pt/a								
S-metolachlor&	1.26	PRE/	55	98	93	93	95	96	0
atrazine&	1.63								
benoxacor/									
bromoxynil+	0.31	POST							
atrazine	0.63								
LSD (P=.05)			21	9	2	3	1	6	0

¹COC = 'Prime Oil' by Agriliance

²NIS = 'Preference' by Agriliance

 $^{^{3}}$ 2,4-D = 2,4-D Amine

⁴MSO = 'Destiny' by Agriliance

⁵AMS = 'N-PAK' by Agriliance