Evaluation of conventional weed control programs in corn. Horky, Kevin T. and Alex R. Martin. A field study was conducted to evaluate the efficacy of conventional weed control programs in corn. A randomized complete block design with three replications per treatment was utilized. The study was conducted on a Sharpsburg silt loam with 2.7% organic matter and a pH of 6.8. Individual plots consisted of six 30-inch rows, each 30 feet long. 'Dekalb 6016' corn was planted May 28 at a population of 20,600 seeds per acre. Treatments were applied with a tractor-mounted sprayer at a speed of 3.0 mph. EPOST treatments were applied 19 days after planting, MPOST treatments were applied 26 days after planting, and LPOST treatments were applied 32 days after planting. Application, weed, and environmental data are presented below:

Date	May 28 PRE	June 16	June 23	June 29
Treatment	PRE	EPOST	MPOST	LPOST
Sprayer	15	15	15	15
gpa psi	30	30	30	30
Temperature (°C)	00	00	00	00
air	29	27	30	21
soil (4 inch)	19	21	21	21
Soil Moisture	adequate	adequate	adequate	adequate
Wind (mph)	4	7	2	2
Sky (% cloudy)	40	70	10	5
Relative				
humidity (%)	29	53	19	54
Precip. After appl. (inches)				
week 1	0.51	1.53	0.07	2.92
week 2	0.18	0.07	3.23	0.66
Corn		1.40		\
stage		V3	V4	V5
height (cm)		12.7	24	35
Common sunflower		10	20	25
height (cm) infestation (m ²)		10 4	20 4	25 1
, ,		4	4	1
Palmer amaranth		40	4.4	00
height (cm)		10 5	14 5	20 5
infestation (m ²)		5	5	3
Velvetleaf		7	40	00
height (cm)		7 4	10 4	20 4
infestation (m ²)		4	4	4
Green foxtail		4.0	4.0	00
height (cm)		10	12	20
infestation (m ²)		5	5	1

Summary comment: All treatments provided good to excellent control of grass and broadleaf weeds. Crop injury was not observed with any of the treatments. Results of the study are summarized in the following table. (Dept. of Agronomy and Horticulture, University of Nebraska-Lincoln)

Table. Evaluation of conventional weed control programs in corn (Horky and Martin).

	Application		HELAN				AMAPA			ABUTH			SETVI		
Treatment	Rate	Timing	6/15	6/30	7/19	6/15	6/30	7/19	6/15	6/30	7/19	6/15	6/30	7/19	
	(lb/a)			% Weed Control											
Atrazine&	0.775	PRE/	57	98	98	62	98	98	60	96	96	73	85	85	
S-metolachlor&	0.6														
benoxacor/															
nicosulfuron&	0.023	MPOST													
rimsulfuron+	0.012														
mesotrione+	0.063														
atrazine+	0.75														
COC1+	1 %v/v														
AMS ²	2.0														
Rimsulfuron&	0.016	PRE/	70	98	98	87	96	96	77	99	99	77	88	88	
thifensulfuron+	0.008														
atrazine/	0.75														
nicosulfuron&	0.023	MPOST													
rimsulfuron+	0.012														
mesotrione+	0.063														
atrazine+	0.75														
COC+	1 %v/v														
AMS	2.0														
Atrazine&	0.26	PRE/	50	98	98	38	96	96	42	98	98	37	88	88	
S-metolachlor&	0.2														
benoxacor/															
nicosulfuron&	0.023	MPOST													
rimsulfuron+	0.012														
mesotrione+	0.063														
atrazine+	1.5														
COC+	1 %v/v														
AMS	2.0														
Atrazine/	1.25	PRE/	83	96	96	68	98	98	65	98	98	82	88	88	
nicosulfuron&	0.023	MPOST													
rimsulfuron+	0.012														
mesotrione+	0.063														
atrazine+	0.25														
COC+	1 %v/v														
AMS	2.0														
Nicosulfuron&	0.023	MPOST	0	98	98	0	95	95	0	98	98	0	88	88	
rimsulfuron+	0.012														
mesotrione+	0.063														
atrazine+	1.5														
COC+	1 %v/v														
AMS	2.0														

(continued)

Table. Evaluation of conventional weed control programs in corn (Horky and Martin), continued.

Treatment	Application		HELAN			AMAPA			ABUTH			SETVI		
	Rate	Timing	6/15	6/30	7/19	6/15	6/30	7/19	6/15	6/30	7/19	6/15	6/30	7/19
	(lb/a)							% We	eed Contr	rol				
Atrazine&	0.97	EPOST	0	96	96	0	98	98	0	96	96	0	88	88
S-metolachlor&	0.75													
benoxacor+														
nicosulfuron&	0.023													
rimsulfuron+	0.012													
mesotrione+	0.063													
COC+	1 %v/v													
AMS	2.0													
Dimethenamid-P&	0.85	PRE	90	87	87	91	88	88	85	82	82	93	88	88
atrazine+	1.65													
isoxaflutole	0.047													
Dimethenamid-P&	0.85	PRE/	95	87	92	96	90	95	90	85	92	82	75	85
atrazine/	1.65													
dicamba&	0.125	LPOST												
diflufenzopyr+	0.05													
NIS ³ +	0.25 %v/v													
AMS	2.0													
Dimethenamid-P&	0.425	MPOST	0	83	83	0	87	87	0	80	80	0	92	92
atrazine+	0.825													
dicamba&	0.125													
diflufenzopyr&	0.05													
nicosulfuron+	0.031													
NIS+	0.25 %v/v													
AMS	2.0													
Pendimethalin+	1.19	PRE/	78	87	87	77	83	83	78	88	88	80	88	88
atrazine/	1.0													
dicamba&	0.125	MPOST												
diflufenzopyr+	0.05													
NIS+	0.25 %v/v													
AMS	2.0													
LSD (P=.05)			13	6	6	19	6	6	23	6	6	13	10	7

¹COC = 'Prime Oil' by Agriliance

²AMS = 'N-PAK' by Agriliance

³NIS = 'Preference' by Agriliance