Weed Control in Specialty Crops

Evaluation of preemergence weed control programs in grain sorghum. Horky, Kevin T. and Alex R. Martin. A field study was conducted to evaluate the efficacy of weed control programs in grain sorghum. A randomized complete block design with three replications per treatment was utilized. The study was conducted on a Sharpsburg silty clay loam with 3.1% organic matter and a pH of 6.6. Individual plots consisted of six 30-inch rows, each 30 feet long. 'Dekalb DK53' grain sorghum was planted May 27 at a rate of 9 pounds per acre. Treatments were applied with a tractor-mounted sprayer traveling 3.0 mph. EPP treatments were applied 8 days before planting, and POST treatments were applied 34 days after planting. Application, crop, weed, and environmental data are presented below:

Date Treatment	May 19 EPP	May 27 PRE	June 30 POST
Sprayer	LII	I IXL	1 001
gpa	15	15	15
psi	30	30	30
Temperature (°C)	00	00	00
air	24	18	30
soil (4 inch)	_ · 15	16	23
Soil Moisture	adequate	adequate	adequate
Wind (mph)	4	7	1
Sky (% cloudy)	5	30	0
Relative			
humidity (%)	39	46	41
Precip. After appl. (inches)			
week 1	0.1	2.14	0.06
week 2	1.42	1.6	0
Sorghum			
stage			V4
height (cm)			35
Velvetleaf			
height (cm)			15
infestation (m2)			4
Common sunflower			
height (cm)			15
infestation (m2)			5
Palmer amaranth			
height (cm)			13
infestation (m2)			5
Green foxtail			
height (cm)			10
infestation (m2)			2

Summary comments: Higher rates of mesotrione EPP and PRE caused initial grain sorghum chlorosis which rapidly decreased. Mesotrione injury was not reflected in sorghum yield. Results of the study are summarized in the following table. (Dept. of Agronomy and Horticulture, University of Nebraska-Lincoln)

Evaluation of preemergence weed control programs in grain sorghum (Horky and Martin).

	Application		ABUTH		HELANAMAPA			SE	TVI	SORVU					
														Stand Loss	YIELD
Treatment	Rate	Timing	6/30	7/14	6/30	7/14	6/30	7/14	6/30	7/14	6/9	6/17	7/7	6/17	10/17
	(lb/a)					-% Weed	Control				%	Chloros	is	%	(bu/ac)
S-metolachlor&	1.68	EPP	95	95	91	91	96	96	96	96	6	0	0	0	104
atrazine&	0.63														
mesotrione&	0.168														
benoxacor															
S-metolachlor&	3.35	EPP	98	98	99	99	99	99	98	98	27	1	0	0	113
atrazine&	1.25														
mesotrione&	0.335														
benoxacor															
S-metolachlor&	1.31	EPP	98	98	99	99	99	99	99	99	5	0	0	0	117
atrazine&	1.31										ŭ	ŭ		ŭ	• • • •
mesotrione&	0.168														
benoxacor	0.100														
S-metolachlor&	2.61	EPP	99	99	96	96	99	99	99	99	22	1	0	0	118
atrazine&	2.61	LII	33	33	90	30	33	99	99	33	22	'	U	O	110
mesotrione&	0.336														
benoxacor	0.550														
	1 26	EPP	62	86	82	93	92	96	95	95	0	0	0	0	100
S-metolachlor&	1.26	EFF	63	00	02	93	92	90	90	95	U	U	U	U	100
atrazine&	1.63														
benoxacor	0.50	EDD	00	00	70	00	00	0.5	0.5	0.5	•		•	•	440
S-metolachlor&	2.52	EPP	80	99	73	96	92	95	95	95	0	0	0	0	112
atrazine&	3.26														
benoxacor													_		
S-metolachlor&	1.68	PRE	99	99	96	96	99	99	99	99	8	1	0	10	118
atrazine&	0.63														
mesotrione&	0.168														
benoxacor															
S-metolachlor&	3.35	PRE	99	99	98	98	99	99	99	99	30	3	0	7	124
atrazine&	1.25														
mesotrione&	0.168														
benoxacor															
S-metolachlor&	1.31	PRE	99	99	99	99	99	99	99	99	5	1	0	0	97
atrazine&	1.31														
mesotrione&	0.168														
benoxacor															
S-metolachlor&	2.61	PRE	99	99	99	99	99	99	99	99	43	4	0	13	121
atrazine&	2.61														
mesotrione&	0.336														
benoxacor															
S-metolachlor&	1.26	PRE	65	99	88	95	96	98	93	93	0	0	0	0	102
atrazine&	1.63														
benoxacor															
S-metolachlor&	2.52	PRE	83	93	91	96	98	98	99	99	0	0	0	0	101
atrazine&	3.26														
benoxacor															

(continued)

Evaluation of preemergence weed control programs in grain sorghum (Horky and Martin), continued.

	Application		ABUTH		HELAN		AMAPA		SETVI		SOR\			VU	
														Stand Loss	YIELD
Treatment	Rate	Timing	6/30	7/14	6/30	7/14	6/30	7/14	6/30	7/14	6/9	6/17	7/7	6/17	10/17
	(lb/a)					% Weed	Control				%	Chloros	is	%	(bu/ac)
S-metolachlor& benoxacor/	1.63	PRE/	48	96	78	96	95	98	60	43	0	0	0	0	109
fluoxypyr+	0.126	POST													
atrazine+ COC ¹	1.1 1% v/v														
Mesotrione+ NIS ²	0.063 0.25% v/v	POST	0	95	0	98	0	96	0	35	0	0	20	0	86
LSD (P=.05)			17	12	9	6	5	3	6	10	14	4	2	11	27

¹COC = 'Prime Oil' by Agriliance

²NIS = 'Preference' by Agriliance